

The Pinkerton Foundation

Department of Civil Engineering, The City College of New York, NOAA/Center for Earth System Sciences and Remote Sensing Technology (CREST), City University of New York (CUNY)

environment, and human safety.

- event caused the failure.
- \succ Determine areas that are prone to high level floods.
- \succ Explore other possible reasons for bridge failure.

observations into k < n sets $S = \{S_1, S_2, ..., S_k\}$ in order to find

$$\operatorname{argmin}_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2} = \operatorname{argmin}_{S} \sum_{i=1}^{k} |S_{i}| \operatorname{Var}(S_{i})$$

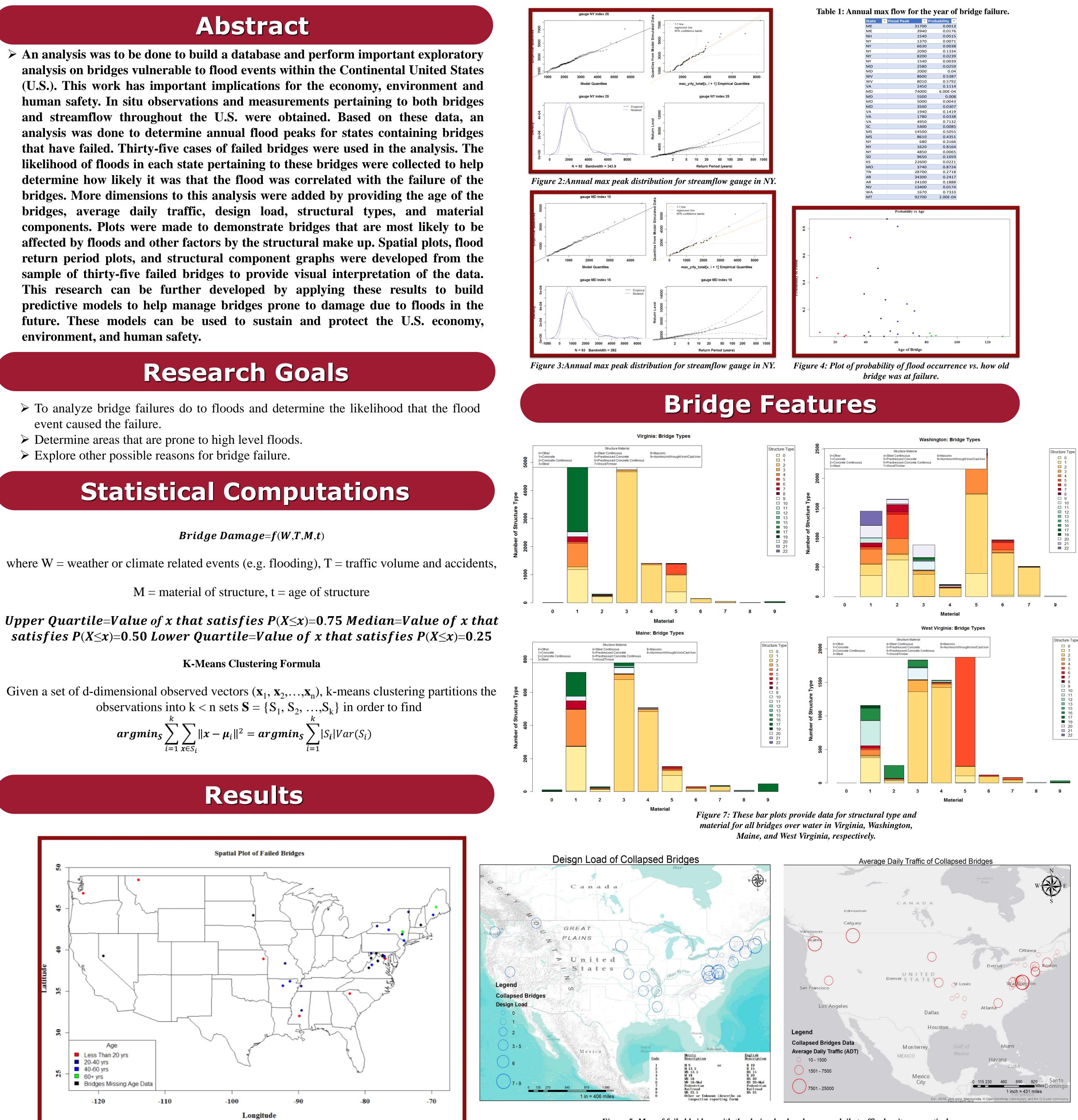


Figure 1: Spatial plot of thirty-five failed bridges in the US. In this plot spatial clusters can be observed.

Developing a Nationwide Bridge Geodatabase to Investigate Flood Related Bridge Collapses

Tahmid Asif, Abraham Rubel, Naresh Devineni, Nasser Najibi, and Arun Ravindranath

Figure 5: Map of failed bridges with the design load and average daily traffic density, respectively.

Address: 160 Convent Ave., New York, NY 10031, USA NOAA/CREST website: http://noaacrest.org/

verage Daily Traffic (AD

Figure 8: This box plot provides average daily traffic data from the sixteen states containing the 35 failed bridges to consider

the average daily traffic for the thirty-five failed bridges

Design Loa

Figure 9: This box plot provides design load data from the sixteen states containing the 35 failed bridges to consider the design load for the thirty-five failed bridges

Built Year

Figure 10: This box plot provides built year data from the sixteen states containing the 35 failed bridges to consider the

year built for the thirty-five failed bridges

> For the thirty-five failed bridges most bridges were found to have experienced extreme flood conditions on the year of failure. An additional flood component that may be explored is flood duration. The age of the bridges varied from 20-80 years of age with a few outliers being younger and older (as young as 8 years and old as 120 years). From the exploratory analysis, plots and tables were obtained to consider the other components that may have contributed to the failure of the bridges. The average daily traffic, design load, built year, structural type, and material were considered and can now be used for further analysis to provide more information regarding the vulnerability of bridge failure in the future.

Summary

≤ š

Acknowledgements

> This research project and my HIRES summer research internship are funded by the Pinkerton Foundation under the CUNY-CREST Institute.

CUNY CREST

ble 2: Avera	nge daily tr	affic of faile
State		Log(ADT)
ME	30	1.477121255
ME	1360	3.133538908
NH		3.812913357
NY		3.691435152
NY	732	2.864511081
NY	18	1.255272505
NY	3993	3.60129931
NY	6110	3.78604121
MD	500	2.698970004
MD	20	1.301029996
WV	5700	3.755874856
WV	970	2.986771734
VA		2.921686475
MD		2.301029996
MD		3.642662331
MD	15000	4.176091259
MD	7712	3.887167021
VA	298	2.474216264
VA	621	2.7930916
VA	40	1.602059991
SC	1682	3.225825991
MS	1002	3.223023331
MS	20	1.301029996
NY	617	2.790285164
NY	103	2.012837225
NY	1015	3.006466042
SD	5760	3.760422483
KS	3571	3.55278985
MO	15	1.176091259
TN	10	1
AR	1460	3.164352856
AR	30	1.477121255
NV	6796	3.83225337
WA	20060	4.302330929
L		

Table 3:	Design l	load of faile	d bridge	s.
	State 🔽		-	
	ME		3	
	ME		6	
	NH		5	
	NY		1	
	NY		7	
	NY		1	
	NY		1	
	NY		4	
	MD		6	
	MD		4	
	WV		6	
	WV		1	
	VA		5	
	MD		1	
	MD		5	
	MD		4	
	MD		1	
	VA		4	
	VA		7	
	VA		1	
	SC		2	
	MS		4	
	MS		1	
	NY		4	
	NY		1	
	NY		6	
	SD		5	
	KS		4	
	MO		4	
	TN		4	
	AR		2	
	AR		4	
	NV		4	
	WA		4	
	MT		4	

Table 4: Built year of failed bridges.

1916 1938